The interaction between human PEX3 and PEX19 characterized by fluorescence resonance energy transfer (FRET) analysis.

نویسندگان

  • Ania C Muntau
  • Adelbert A Roscher
  • Wolf-H Kunau
  • Gabriele Dodt
چکیده

The process of peroxisome biogenesis involves several PEX genes that encode the machinery required to assemble the organelle. Among the corresponding peroxins the interaction between PEX3 and PEX19 is essential for early peroxisome biogenesis. However, the intracellular site of this protein interaction is still unclear. To address this question by fluorescence resonance energy transfer (FRET) analysis, we engineered the enhanced yellow fluorescent protein (EYFP) to the C-terminus of PEX3 and the enhanced cyan fluorescent protein (ECFP) to the N-terminus of PEX19. Functionality of the fusion proteins was shown by transfection of human PEX3- and PEX19-deficient fibroblasts from Zellweger patients with tagged versions of PEX3 and PEX19. This led to reformation of import-competent peroxisomes in both cell lines previously lacking detectable peroxisomal membrane structures. The interaction of PEX3-EYFP with ECFP-PEX19 in a PEX3-deficient cell line during peroxisome biogenesis was visualized by FRET imaging. Although PEX19 was predominantly localized to the cytoplasma, the peroxisome was identified to be the main intracellular site of the PEX3-PEX19 interaction. Results were confirmed and quantified by donor fluorescence photobleaching experiments. PEX3 deletion proteins lacking the N-terminal peroxisomal targeting sequence (PEX3 34-373-EYFP) or the PEX19-binding domain located in the C-terminal half of the protein (PEX3 1-140-EYFP) did not show the characteristic peroxisomal localization of PEX3, but were mislocalized to the cytoplasm (PEX3 34-373-EYFP) or to the mitochondria (PEX3 1-140-EYFP) and did not interact with ECFP-PEX19. We suggest that FRET is a suitable tool to gain quantitative spatial information about the interaction of peroxins during the process of peroxisome biogenesis in single cells. These findings complement and extend data from conventional in vitro protein interaction assays and support the hypothesis of PEX3 being an anchor for PEX19 at the peroxisomal membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association between the Intrinsically Disordered Protein PEX19 and PEX3

In peroxisomes, peroxins (PEXs) 3 and 19 are the principal protein components of the machinery required for early peroxisomal biogenesis. For further insight into the interaction of PEX3 and PEX19, we used hydrogen exchange mass spectrometry to monitor conformational changes during complex formation between PEX3 and PEX19 in vitro. Our data showed that PEX19 remained highly flexible during inte...

متن کامل

Spectroscopic, Docking and Molecular Dynamics Simulation Studies on the Interaction of Etofylline and Human Serum Albumin

The purpose of this study is to investigate the interaction of Etofylline as an established drug for asthma remedy, with the major transport protein in human blood circulation, the human serum albumin (HSA). In this respect, the fluorescence and circular dichroism (CD) spectroscopy techniques, along with the molecular docking and molecular dynamics simulation methods were employed. Analysis of ...

متن کامل

Insights into peroxisome function from the structure of PEX3 in complex with a soluble fragment of PEX19.

The human peroxins PEX3 and PEX19 play a central role in peroxisomal membrane biogenesis. The membrane-anchored PEX3 serves as the receptor for cytosolic PEX19, which in turn recognizes newly synthesized peroxisomal membrane proteins. After delivering these proteins to the peroxisomal membrane, PEX19 is recycled to the cytosol. The molecular mechanisms underlying these processes are not well un...

متن کامل

Contribution of the Endoplasmic Reticulum to Peroxisome Formation

How peroxisomes are formed in eukaryotic cells is unknown but important for insight into a variety of diseases. Both human and yeast cells lacking peroxisomes due to mutations in PEX3 or PEX19 genes regenerate the organelles upon reintroduction of the corresponding wild-type version. To evaluate how and from where new peroxisomes are formed, we followed the trafficking route of newly made YFP-t...

متن کامل

Detecting multiple oligomerization states by multidimensional analysis of FRET images

Fluorescence resonance energy transfer (FRET) microscopy is commonly used to measure distances between fluorophores or to qualitatively confirm interaction of proteins. Whereas multiple FRETing oligomerization states may be characterized clearly using single-molecule techniques, cellular applications suffer from wide and immeasurable variability in concentration of each species across pixels. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of cell biology

دوره 82 7  شماره 

صفحات  -

تاریخ انتشار 2003